Prof. Morten Willatzen Theory Group
           Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences

(1) J. Shao, Y. Yang, O. Yang, J. Wang, M. Willatzen, and Z. L. Wang "Designing rules and optimization of TENG arrays", Adv. Energy Mater. DOI: 10.1002/aenm.202100065 (2021).

ABUIABACGAAg99H--wUovM2a8gIwpgQ47gM

(2) L. C. Lew Yan Voon,   J. E. Hasbun,   M. Willatzen,   Z. L. Wang,"Generalized Weisskopf‐Wigner model of triboelectroluminescence", EcoMat, doi:1002/eom2.12086 (2021).

ABUIABACGAAg99H--wUovM2a8gIwpgQ47gM

(3) A. Uskov, I. E. Protsenko, I. V. Smetanin, and M. Willatzen "Resonance photogeneration of hot electrons through Tamm surface states'', Optics Letters, 46,3, 568-571 (2021).

ABUIABACGAAg99H--wUovM2a8gIwpgQ47gM

(4) D. Tan, M. Willatzen, and Z. L. Wang "Electron transfer in the contact-electrification between corrugated 2Dmaterials: A first-principles stud‍y'', Nano Energy,79, 105386 (2021).

ABUIABACGAAgnM7--wUo6KvAgAMw9wE49AE

(5) Daniele Barettin, Matthias Auf der Maur, Alessandro Pecchia, Yan Zhang, Morten Willatzen, and Zhong Lin Wang, ''Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well device'', J. Phys. Mater. 4 034008 (2021).

ABUIABAEGAAg6sOthQYo256D0QUwtgQ4yAU

(6) J. Gravesen and M. Willatzen "Quantum Eigenstates of Curved and Varying-Cross-SectionalWaveguides'', Appl. Sci. 10, 7240 (2020); doi:10.3390/app10207240.

ABUIABACGAAg99H--wUovM2a8gIwpgQ47gM

(7) P. Gao, M. Willatzen, and J. Christensen "Anomalous topological edge states in non-Hermitian piezophononic media'', Phys. Rev. Lett. 125, 206402 (2020).

ABUIABAEGAAg19D--wUohv3QzAUw9AM4_gI

(8) J. Shao, M. Willatzen, and Z. L . Wang "Theoretical modeling of triboelectric nanogenerators (TENGs)'', Journal of Applied Physics,128, 111101, p. 1-32 (2020).

ABUIABACGAAgm8z--wUo9_DVjwEw9AM47AE

(9) Mohammad Alidoust, Klaus Halterman, Douxing Pan, Morten Willatzen, and Jaakko Akola "Strain-engineered widely tunable perfect absorption angle in black phosphorus from first principles'', Physical Review B, 102, 115307 (2020).

ABUIABAEGAAg-cj--wUowJfG_QQw9AM48wI

(10) M. Willatzen, P. Gao, J. Christensen, and Z. L. Wang "Acoustic gain in solids due to piezoelectricity, flexoelectricity, and electrostriction‍'', Advanced Functional Materials, 2003503, p.1-7 (2020).

ABUIABACGAAg8cf--wUogq-kzAUw6Ac4uQc

(11) O. Marquardt, M. A. Caro, T. Kropucki, P. Mathe, and M. Willatzen "Multiband k⋅p model and fitting scheme for ab initio based electronic structure parameters for wurtzite GaAs", Physical Review B, 101, 235147 (2020).

ABUIABAEGAAghMb--wUohPnUpwMw9AM4tQI

(12) J. Shao, D. Liu, M. Willatzen and Z. L. Wang "Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode", Applied Physics Reviews, 7, 011405 (2020).

ABUIABAEGAAgqNz--wUo5-GXxgcwoQY42gU

(13) M. Willatzen, L. C. Lew Yan Voon, and Z. L. Wang"Quantum theory of contact electrification for fluids and solids", Advanced Functional Materials, 1910461, p.1-8 (2020).

ABUIABAEGAAgq8L--wUo-Kjc2QIw6Ac48AQ

(14) D. Tan, M. Willatzen, and Z. L. Wang "Out-of-plane polarization in bent graphene-like zinc oxide and nanogenerator applications", Advanced Functional Materials, 1907885, p.1-8 (2020).

ABUIABACGAAg7uj6-wUo28rytQMw6Ac45AU

(15) Y. Nan, D. Tan, J. Q. Zhao, M. Willatzen, and Z. L. Wang "Shape- and size dependent piezoelectric properties of monolayer hexagonal boron nitride nanosheets"‍, Nanoscale Advances, DOI: 10.1039/C9NA00643E (2019).

ABUIABAEGAAg1_677wUowoXNxwEw2wU40AU

(16) D. Tan, M. Willatzen, and Z. L. Wang "Out-of Plan Polarization in Bent Graphene-Like Zinc Oxide and Nanogenerator Applications"‍, Adv. Func. Mat. 1907885 (2019).

ABUIABAEGAAg7N_77wUoy7i69AYw9AM48gI

(17) M. Taherkhani, M. Willatzen, E. V. Denning, I. E. Protsenko and N. Gregersen "High-fidelity optical quantum gates based on type-II double quantum dots in a nanowire"‍, Physical Review B, 99, 165305 (2019).

ABUIABAEGAAgk7GJ5wUosIX3_gEw9AM40wI

(18) M. Alidoust, M. Willatzen, and A. P. Jauho "Symmetry of superconducting correlations in displaced bilayers of graphene"‍, Physical Review B, 99, 155413 (2019).

ABUIABAEGAAgn6_J5wUo0L7W-wYw9AM4igM

(19) M. Alidoust, M. Willatzen, and A. P. Jauho "Control of superconducting pairing symmetries in monolayer black phosphorus"‍, Physical Review B, 99, 125417 (2019).

ABUIABAEGAAg5quJ5wUo4JfHWzD0AzjjAQ

(20) Y. M. Zhang, G. W. Hu, Y. Zhang, L. Li, M. Willatzen, and Z. L. Wang "High performance piezotronic devices based on non-uniform strain‍"‍, Nano Energy, 60, 649-655 (2019).

ABUIABACGAAgrK2J5wUosNug9AMwlBE49gY

(21) J. J. Shao, M. Willatzen, T. Jiang, W. Tang, X. Y. Chen, J. Wang and Z. L. Wang "Q‍u‍‍‍antifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current"‍, Nano Energy, 59, 380-389 (2019).

ABUIABACGAAg_LSJ5wUo8Pb1qgEwjww49gY

(22) M. Willatzen and Z. L. Wang "Quantum-mechanical model for optical transitions between solids"‍, Nano Energy, 61, 311-317 (2019).

ABUIABACGAAg77OJ5wUogJ_h2gQwqQU49gY

(23) D. Tan, M. Willatzen, and Z. L. Wang "Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures",Nano Energy, 56, 512-515 (2019) .

ABUIABACGAAgwbKJ5wUogK7JkQUwrQM4yAE

(24) J. J. Shao, M. Willatzen, Y. J. Shi, and Z. L. Wang "3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators"‍,Nano Energy, 60, 630-640 (2019).

ABUIABACGAAgk7OJ5wUo87maqAIw6As49gY

(25) M. Willatzen and Z. L. Wang."Contact electrification by quantum-mechanical tunneling"‍,‍ Research (Science Partner Journal) Article ID 6528689, 11 pages, doi: 10.34133/2019/6528689 (2019).

ABUIABAEGAAgiKCs7AUortq6vQMwwwU4igU

(26) M. R. Brems and M. Willatzen."Strain and electric field tuning of 2D hexagonal boron arsenide"‍,‍ New J. Phys., 21, 093030 (2019).

ABUIABAEGAAgmKGs7AUo3PicwQQwqQY42wU

(27) J. Gravesen and M. Willatzen,On the geometry of nanowires and the role of torsion”,Physica Status Solidi Rapid Research Letter 13, 11 p., 1800357 (2019).

ABUIABAEGAAggtLF3gUo292e3gcwsQc4mQI

(28) D. Tan, Y. Xiang, Y.G. Leng and Y. S. Leng. "On the metal/ZnO contacts in a sliding-bending piezoelectric nanogenerator"‍, Nano Energy 50, 291–297 (2018).

ABUIABACGAAgvNvF3gUovYacswMwogs49gY

(29) L.C. Lew Yan Voon, M. Willatzen, and Z. L. Wang, “Model calculation of the piezoelectric constant of hexagonal two-dimensional materials”, Advanced Theory and Slmulations,1800186 (2018).

(30) Y. Zhang, Y. Leng, M. Willatzen, and B. Huang, “Theory of piezotronics and piezo-phototronics”, MRS Bulletin, Vol.43, Issue 12, 928-935, (Dec. 2018).

(31) M.Alidoust, M. Willatzen, and A.-P. Jauho, Fraunhofer response and supercurrent spin switching in black phosphorus with strain”‍,   Physical Review B, 98, 184505 (2018).

ABUIABAEGAAgpKOs7AUopK_EmQYw9AM4mQI

(32) O. Marquardt, P. Mathe, T.Koprucki, M. A. Caro, and M. Willatzen, “Data-driven electronic structure calculations in semiconductor nanostructures – beyond the eight-band k.p formalism”, Paper TuB4 (Oral presentation + Proceeding contr.), 18th Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD), Hong Kong, Nov. 5-9 (2018).

(33) M.Willatzen and Z. L. Wang, "Theory of contact electrification: Optical transitions in two-level systems", Nano Energy 52, 517-523 (2018).

ABUIABAEGAAgttXF3gUo59a77AcwrwM44wI

(34) L. Duggen, M. Willatzen, and Z. L. Wang, “Mechanically-bent graphene as an effective piezoelectric nanogenerator”, J. Phys. Chem. C, 122, 36, 20581-20588 (2018) - published online DOI: 10.1021/acs.jpcc.8b05246 (2018).

(35) J. Gravesen and M. Willatzen,The four-band spin-less Kane model in curved coordinates”‍, Physica Status Solidi. Rapid Research Letters 13, 5 p., 1800305 (2018).

(36) M. Alidoust, M. Willatzen, and A.-P. Jauho,“Strain-engineered Majorana zero energy nodes and phi_0 Josephson State in Black Phosphorus”‍,Physical Review B 98, 085414 (2018).

ABUIABAEGAAgxM-F3gUoof2o0Acw1gQ4oQM

(37) M.Willatzen, M. R. Jensen, J. Paaske, A. M. Lunde, and Z. L. Wang “Effective strain-optimized energy harvesting using thin film topological insulators”, Invited Presentation at NGPT Conference Seoul, (May 8-11, 2018)

(38) M. Willatzen, L. C. Lew YanVoon, L. Duggen, and Z. L. Wang, “Coupled acousto-optical phonons in 2D andbulk materials”, APS March Meeting, Abstract R07.00013 in Session R07:Computational Approaches to Phonons in Semiconductors, March 5-9, 2018, LosAngeles, California.

(39) L. C. Lew Yan Voon, M.Willatzen, and M. R. Jensen, “Band structure of borophene”, APS March Meeting, Abstract L51.00009 in Session L51: Quantum dots and other nanostructures, March 5-9,2018, Los Angeles, California.

(40) M. R. Jensen, J. Paaske, A. M. Lunde, and M. Willatzen, “Strain tuning of the optical absorbance in topological insulator material bismuth selenide”, APS March Meeting, Abstract B08.00008 in Session B08: Topological Insulator Experiment and Computation, March 5-9, 2018, Los Angeles, California.

(41) B.Lassen, M. Willatzen, and J. Gravesen, "Differential Geometry Applied to Rings and Mobius Nanostructures"‍,Chapter 16 in Second Ed. Of Quantum Rings, Springer.

ABUIABAEGAAggsrF3gUoorKCggcwnwE46gE

(42) M. Willatzen and Z. L. Wang, "Continuum model for coupled acousto-optical phonons in piezoelectric materials"‍, In: Bonilla L., Kaxiras E., Melnik R. (eds) Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications. BIRS-16w5069 2016.Springer Proceedings in Mathematics & Statistics, vol 232. Springer, Cham(2018).

ABUIABAEGAAgicjF3gUoyKKatwUw_AI42wQ

(43) A.Merkel, M. Willatzen, and J. Christensen, "Dynamic nonreciprocity in loss-compensated piezo-phononic media"‍, Physical Review Applied 9, 034033 (2018).

ABUIABAEGAAg7MXF3gUo1LTt7wQwkgQ4jAI

(44) M.Rosdahl Brems, J. Paaske, A. M. Lunde, and M. Willatzen, "Symmetry analysis of strain, electric and magnetic fields in the Bi_2Se_3 class of topological insulators", New Journal of Physics, Vol.20, No. 5, 053041 (2018).

ABUIABAEGAAg58XF3gUostTvogMw-gg45gQ

(45) M.Rosdahl Brems, J. Paaske, A. M. Lunde, and M. Willatzen, "Strain-enhanced optical absorbance of topological insulator films", Physical Review B Rapid Communications 97, 081402 (2018).

ABUIABAEGAAglrvF3gUo7Our6wYwxwM4pgI

(46) D. Tan, Y. Xiang and Y. S. Leng. "Molecular simulation study of piezoelectric potential distribution in a ZnO nanowire under mechanical bending"‍, MRS Advances 2(56), 3433-3439 (2017).

Address: 8 Yangyan East Road, Huairou District, Beijing, P.R.China